
International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 570
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Injecting Quantifiability to Promote Software
Maintenance

Engr. Syed Rizwan Ali 1st, Azmat Khan 2nd, Muhammad Shahid Khan 3rd, Bilal Muhammad Iqbal 4th

Abstract — Generally, the power of quantifiability is underestimated. Life cycle costs are dependent on software system maintenance
costs. Systems engineering can improve with a more structured effort, by setting proper targets instead of applying conventional customs
that seem right but in actual may not be sufficient. The maintenance process becomes more efficient once the maintainability process is
quantifiable. All requirements should possess capability to be quantitatively measureable, which will eventually result in better software
products. Targeted aims and software metrics are essential components to quantify software systems. The degree of software product
maintainability is dependent upon several software metrics described in this paper.

Index Terms— Cost, Engineering, Improvement, Maintainability, Measurability, Metrics, Quantifiability

—————————— ——————————

1 INTRODUCTION
OFTWARE maintenance is one of the most important,
costly and effort demanding phase of software engineering.
Recently it has been neglected and exposed to program-

ming culture intuition. Software maintenance encompasses
error removing (bug fixing), upgrading & updates according to
changed requirements, changeability (ease to change) accord-
ing to specific requirements by customers or external environ-
ment, enhanced functionality, modifiability and ease to use of
software developed.

2 SOFTWARE MAINTENANCE
2.1 Types of Maintenance
According to Gilb (2008) the cost of software maintenance in-
curs major percentage of total cost of software life cycle. It co-
vers significant portion of total cost of software development,
maintenance & upgrades. Stavrinoudis (1999) classified Soft-
ware maintenance into four types, which are as follows:

• Corrective Maintenance is bug fixing once software is in

use.

• Adaptive Maintenance is to make changes in the soft-
ware according to changes in external environment.

• Perfective Maintenance refers to changes requested by
the customer to enhance certain features of the software.

• Preventive Maintenance refers to those changes that im-
prove future maintainability and future upgrades.

2.2 Quantifiablility
Quantitative principles has to be set forth to set new targets
that pay off the initial investment, improving software function
on long-term basis, enhancing functionality with ease to
change for upgrades. Software maintenance requirements must
be defined quantitatively to architect and engineer for desired
results (Gilb, 2008).

3 SOFTWARE MAINTANCE PROBLEMS
The current problem with software maintenance is that it’s
never systematically engineered to reach specific targets but
normally it is crafted in the traditional way with norms, cus-
toms and habits that seem suitable according to the situation.

Gilb (2008) suggested that software has to be engineered and
maintained to a new level, specific goals and targets that pay
off, but usually normal customs are fitted into developmental
phase and maintenance without foreseeing the specific results.
This research is associated with software maintenance cost on
large scale or having critical values. Problem issues are as fol-
low:

• Quantitative principles are not defined up front.

• Non-specified unexpected maintainability is not archi-
tected in quality requirements.

• Not testing before release of the software.

• No quantitative measure in software lifetime.

• Not built to meet unspecified requirements.

S

————————————————
• Engr. Syed Rizwan Ali, Department of Computer Sciences, Bahria Uni-

versity, Karachi, Pakistan, E-mail: rizwan.ali@bimcs.edu.pk
• Azmat Khan, Department of Computer Sciences, Bahria University, Ka-

rachi, Pakistan, E-mail: azmat.khan@bimcs.edu.pk
• Muhammad Shahid Khan , Department of Computer Sciences, Bahria

University, Karachi, Pakistan, E-mail: m.shahid@bimcs.edu.pk
• Bilal Muhammad Iqbal, Department of Computer Sciences, Bahria Uni-

versity, Karachi, Pakistan, E-mail: bilal.miqbal@bimcs.edu.pk

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 571
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The current practice and customs in software engineering are
crafting the design of software and not actually engineering it.
The current practice in department of software maintenance is:

• Software development and maintenance team may list
some high-level objectives but never take them as se-
riously to take any action further.

• The team might even decide the technology for a
vague ideal.

• Software architects may carry out certain customs like
decomposition of software, platform selection and
software tools in order to get help.

• The team might suggest and recommend better tools
and resources but fail to provide engineering ap-
proach.

• And with no specific objective and targeted goal in
mind, this is called craft approach not engineering.

3.1 Break Down Steps for Software Maintenance
Gilb (2008) suggested the following areas of software mainte-
nance where design focus is required and may also have a sec-
ondary target level for each:

• Problem recognition time consumed from bug occur-
rence to its detection and report.

• Administrative delay time required for bug reported
till action is started on it to fix it

• Tool collection time Delay time for collection of tools,
gather correct, complete and updated information to
analyze the bug: source code, changes, database access,
reports, similar reports, test cases, test outputs.

• Problem analysis time detection and implication in the
Scale scope above.

• Change time is applied in parallel with Quality Control,
modified only if defects are found.

• Local test time Automated based on distinct software
(two independent changes to distinct modules and run-
ning reasonable test sets, until further notice or failure).

• Change distribution time all necessary changes are
readied and uploaded for customer download even be-
fore local tests begin and changed only if tests fail.

• Customer Installation time is given option of manual or
automated changes, under given circumstances.

4 SOTWARE MAINTENANCE PRINCIPLES
Quantitative principles must be defined for software mainte-
nance in order to reach specific targets and goals. In order to
achieve this Gilb (2008) suggest following important principles
to gain such targets:

• Designing of software must be done with specific tar-
get (conscious design principle).

• Set of changing quality requirements must be clearly
described (Many-Splendored Thing Principle).

• Specific target levels must be defined for a compulsory
minimum level to avoid and target levels to reach de-
sirable results (Multi-level principle) in terms of profit.

• Cost estimation, budget and what pays off finally is
the most crucial step in quantitative (Pay off princi-
ple).

• Priority is always set for what is most important and
crucial step in coding that pays off with limited re-
sources. Targets are not based on choice or arbitrary
levels of maintenance. But maintenance is always spe-
cific to targeted levels (priority dynamics principle).

This means that in software maintenance there should be spe-
cific targeted levels that pay off with regards to money invest-
ment, profits gained and time invested in maintaining and
modifying the code. Quantitative targets will not only boost
software capability of generating more revenues, it will reduce
time in developing and modifying the code and will ease fu-
ture code upgrades.

Quantifiability is more important for large scale software and
critical software, it is not meant for small software that does not
pay off. The scale of measure covers the entire software
maintenance life cycle for initial bug detection till the customer
correction level is reached and satisfactory. This entails to all
processes and technologies for the corresponding design, it is
not just bug detection and patching.

Since software systems are developed under high pressure of
tight deadlines, the goals to achieve certain performance level,
consistency, reliability and usability are performed in a con-
ventional way without reaching specific targets.

4.1 Metrics Used to Improve Software Maintenance

The choice of the suitable internal metrics for measuring the
maintainability of the specific type of product depends on the
qualities of product and the programming language used dur-
ing its implementation. Conventionally used metrics are
Halstead’s software science metrics [Halstead, 1975], cyclomat-
ic complexity [McCabe, 1976], Tsai’s data structure complexity
metrics [Tsai, 1986], lines of code, lines of comments, fan–in,
fan–out, etc. all can be used to measure maintainability level of
a software product.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 572
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

4.2 Maintenability Index
It is a software metric which measures how maintainable (easy
to support and change) is the source code. The maintainability
index is calculated as a factored formula consisting of Lines of
Code (LOC), Cyclomatic Complexity and Halstead volume. It
is used in several automated software metric tools, including
the Microsoft Visual Studio 2010 development environment,
which uses a shifted scale (0 to 100) derivative.

Halstead Complexity measures are software metrics intro-
duced by Maurice Howard Halstead in 1977. These metrics are
computed statically, without program execution.

First this research investigates to compute the following num-
bers, given the program source code:

• n1 = the number of distinct operators.
• n2 = the number of distinct operands.
• N1 = the total number of operators.
• N2 = the total number of operands.

From these numbers, five measures can be calculated:

• Program length: N = N1 + N2
• Program vocabulary: n = n1 + n2,
• Volume: V= N X log2 n
• Difficulty: D= n/2 X N2/n2
• Effort: E= D X V

Cyclomatic Complexity (or conditional complexity) is soft-
ware metric (measurement). It was developed by Thomas J.
McCabe, Sr. in 1976 and is used to indicate the complexity of a
program. It directly measures the number of linearly inde-
pendent paths through a program's source code.

Mathematically, the cyclomatic complexity of a structured
program is defined with reference to a directed graph contain-
ing the basic blocks of the program, with an edge between two
basic blocks if control may pass from the first to the second
(the control flow graph of the program). The complexity is
then defined as:

• M = E − N + 2P where
• M = cyclomatic complexity
• E = the number of edges of the graph
• N = the number of nodes of the graph
• P = the number of connected components

 N

 E

 N

 E

Figure 1: Shows control flow graph of the program

Then this research measures the following metrics from the
source code:

• V = Halstead Volume
• G = Cyclomatic Complexity
• LOC = count of source Lines Of Code (SLOC)
• CM = percent of lines of Comment (optional)

From these measurements the MI can be calculated:

The original formula Equation is:
MI = 171 - 5.2 X ln (V) - 0.23 X (G) - 16.2 X ln (LOC)

The derivative used by SEI is calculated as follows:
MI = 171-5.2 X log2 (V)-0.23XG-16.2X log2 (LOC) +50 X sin
(sqrt (2.4 X CM)) x

The derivative used by Microsoft Visual Studio (since v2008)
is calculated as follows:
MI = MAX (0,(171 - 5.2 X ln(Halstead Volume) - 0.23 X
(Cyclomatic Complexity) - 16.2 X ln (Lines of Code)) X
1100 / 171)

4.3 Charaterize Software Metrics
According to Stavrinoudis (1999) it is mandatory to define and
characterize Software metrics that characterize maintenance
process for ease of change when required for specific software.
Stavrinoudis (1999) explored criteria of maintainability and
processes through which this criteria is interpreted, under-
stood, reached and analyzed by software programmers. This
research investigate whether software metrics and maintaina-
bility are correlated, which software metrics are proposed for
maintainability process, and to determine at what point and in
which cases maintainability requires software metrics.

Factor-Criteria-Metrics model states that maintainability en-
compasses constancy, simplicity, conciseness, self-
descriptiveness and modularity. IEEE standard for quality
metrics defines maintainability as correct-ability, testability
and expandability. ISO– 9126 standards define maintainability
as analyzability, changeability, stability and testability [ISO,
91].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 573
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

4.4 Maintenance Process and its Handling
More and more programs are developed each year. Software
maintenance is a daunting task, even though immense amount
of resources, efforts and time is consumed due to its ever
growing need in software upgrades. Factors that affect soft-
ware maintenance are ease of system management, availabil-
ity of qualified staff and use of standardized programming
language. Negligence at any point of software maintenance
can result in negative impact on software performance. Organ-
izations that are not successfully implementing maintenance
rules of design, implementation and testing may not be able to
take new projects because all resources are consumed by
maintenance of old programs.

Software with high level of maintainability must have mod-
ules with strong cohesion and loose coupling, comprehensive,
simple, understandable, well-organized and sufficiently com-
mented codes. It must have concurrent style, conventional
language, natural expression and well–conceived terminology
of their variables. Implementation of each routine must be
strictly separated.

The implemented design of software must be well-
documented and detailed and a thoughtful module. Further-
more, specific structures of these modules are used to limit the
effort spent during the maintenance process. High reusability
of one program can enhance the probability of the ease with
which software modules can switch to another program. Alt-
hough maintainability is indirectly related with customers, but
only few customers have knowledge about the system to give
any proper directives about maintainability procedure. How-
ever, such directions are normally absent and not given to the
software developer. Customers may revise their requirements
and opinions and requests for modifications in the system
from time to time. Therefore, external requirements also
change and high levels of modifications are required for suc-
cessful software maintenance.

5 APPROACHES FOR MEASURING MAINTAINABILITY
This study has used two extensive methods for measuring
maintainability that depicts external and internal views of the
feature. Maintainability not only depends on product itself but
also on the programmer doing maintenance, which is why it is
an external quality factor.

A direct approach to measure maintainability is to describe
measures required for maintenance process and then gather
the views of the programmers who contribute in the process.
However, this external approach is not only costly, but time
consuming, as it requires conducting a survey. Alternatively,
internal approach is a faster, easier and better approach and
requires use of internal metrics that are analytical and more
realistic for the programmers’ view of the maintainability of
software.

 Software maintenance process is a very complicated one and
the structure of the system usually degrades. Arbitrary patch-
es applied inadequately by any inexperience staff member of
the maintenance team often produce a low quality software
system. Slowly this leaves the system more vulnerable and
difficult to maintain. In order to keep quality of maintenance
at a higher level, software metrics must be used efficiently to
control the degradation of a system.

5.1 Maintainability Measures
The general patterns classify and differentiate the different
classes of change processes on software:

• Adaptability
• Flexibility
• Connectability
• Extendibility
• Interchangeability
• Upgradeability
• Installability
• Portability
• Improvability

5.1.1 Adaptability
The effectiveness of a system can be changed. It is a measure
of a system’s ability to change. The main concern here would
be the availability of resources (time, staff, tools and cost) to
bring change in a specific system according to specific needs.
Since change in specific system can be implemented anytime
provided the resources are available. Scale: Time needed to
adapt a defined System from a defined Initial State to another
defined Final State using defined means.

5.1.2 Flexibility

This concerns the ‘in-built’ ability of the system to adapt or to
be adapted by its users to suit conditions (without any funda-
mental system modification by system development).

Includes: {Connectability, Tailorability}. Connectability
Cost to interconnect the system toits environment. It’s support
in-built within the system to connect the different interfaces.

5.1.3 Extendibility

Scale the cost to add to a defined System, a defined Extension
Class and defined Extension Quantity using a defined Exten-
sion Means. In other words, add such things as a new user or a
new node.

Includes: {Node Addability, Connection addability,
Application Addability, Subscriber Addability}.

N

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 574
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

5.1.4 Interchangeability

The cost is to modify use of system components. This is con-
cerned with the ability to modify the system to switch from
using a certain set of system components to using another set.
For example, this could be a daily occurrence switching sys-
tem mode from day to night use.

5.1.5 Upgradeability

The cost is to modify the system fundamentally; either to in-
stall it or change out system components the ability of the sys-
tem to be modified by the system developers or system sup-
port in planned stages (as opposed to unplanned maintenance
or tailoring the system).
Includes: {Installability, Portability, Improveability}.

5.1.6 Installability

The cost is used to install in defined conditions. This concerns
installing the system code and also, installing it in new loca-
tions to extend the system coverage. Conditions are such as
the installation being carried out by a customer or by an IT
professional on-site.

5.1.7 Portability

The cost is used to move from location to location.
Scale: The cost to transport a defined System from a defined
Initial Environment to a defined Target Environment using
defined Means.

Type: Complex Quality Requirement. Includes: {Data Portabil-
ity, Logic Portability, Command Portability, Media Portabil-
ity}.

5.1.8 Improvability

The cost is used to enhance the system. The ability is used to
replace system components with others, which possesses im-
proved (function, performance, cost and/or design) attributes.
Scale: The cost to add to a defined [System] a defined [Im-
provement] using a defined [Means].

Conclusion
Software metrics present a simple and economical way to
identify and amend probable sources for low product quality
(according to the maintainability factor) as this will be per-
ceived by the programmers. Failures can be prevented by
making specific metric standards and building program
measurements before starting the maintenance process in or-
der to reduce the essential time and effort required for that
phase.

This research found that the Internal and external metrics are
highly correlated with the quality and time of maintainability.
Low quality standards for internal and external metrics may

lead to low maintenance quality, however, this is not always
true and maintainability can be normal or as expected.

A maintainability criterion has to be set forth with specific
internal metrics in order to produce desired results with spe-
cific targets. The main judge for software maintainability is the
programmer to indicate inconsistencies in the code or design
of the software.

Maintainability requirements must be defined quantitatively
and economically. Design must be consciously developed to
meet those targets specific for those requirements and that
economically pays off. Executing that design and testing to
check for required levels is important. Quality checking that
specific design, then either degrading back to the original re-
quired levels or maintain required quality levels is also crucial.

ACKNOWLEDGMENT
We would like to thanks Bahria University Karachi Campus
Computer Science Depratment HoD Dr Humera Farooq for
her support and guidance.

REFERENCES
[1] Gilb, T. (2008) Designing Maintainability in Software Engineering: a Quanti-

fied Approach.
[2] Stavrinoudis, D. (1999) Relation between software metrics and maintainabil-

ity.Proceedings of the FESMA99 International Conference, Federation of Eu-
ropean Software Measurement Associations, Amsterdam, The Netherlands,
pp. 465-476, 1999.

[3] McCabe, J, “A complexity measure”, IEEE Transactions of Software Engineer-
ing, SE-2(4), 1976.

[4] Halstead, H, ‘Elements of Software Science’, Elsevier Publications, N-Holland,
1975. Hudli, R,

[5] Hoskins, C, Hudli, A, ‘Software Metrics for Object OrientedDesigns’, IEEE,
1994.

[6] Tsai, T, Lopez, A, Rodreguez, V, Volovik, D, “An Approach to MeasuringDa-
ta Structure Complexity”, COMPSAC86, pp 240-246, 1986.

[7] IEEE, ‘Standards for a Software Quality Metrics Methodology’, P-1061/D20,
IEEE Press, New York, 1989.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Software Maintenance
	2.1 Types of Maintenance
	2.2 Quantifiablility

	3 Software Maintance Problems
	3.1 Break Down Steps for Software Maintenance

	4 Sotware Maintenance Principles
	4.1 Metrics Used to Improve Software Maintenance

	5 Approaches for Measuring Maintainability
	Conclusion

	Acknowledgment
	References

